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ABSTRACT

A hierarchical, decentralized diagnostic system is proposed for the Real-Time Diagnostic System component

of the Intelligent Control System (ICS) for reusable rocket engines. The proposed diagnostic system has three layers

of information processing: condition monitoring, fault mode detection, and expert system diagnosis. The condition

monitoring layer is the first level of signal processing. Here, important features of the sensor data axe extracted.

These processed data are then used by the higher level fault mode detection layer to do preliminary diagnosis on

potential faults at the component level. Because of the closely coupled nature of the rocket engine propulsion system

components, it is expected that a given engine condition may trigger more than one fault mode detector. Expert
knowledge is needed to resolve the conflicting reports firom the various failure mode detectors. This is the function

of the diagnostic expert layer. Here, the heuristic nature of this decision process makes it desirable to use an expert

system approach.

Implementation of the real-time diagnostic system described above requires a wide spectrum of information

processing capability. Generally, in the condition monitoring layer, fast data processing is often needed for feature

extraction and signal conditioning. This is usually followed by some detection logic to determine the selected faults

on the component level. Three different techniques are used to attack different fault detection problems in NASA
Lewis Research Center ICS testhed simulation. The first technique employed is the neural network application for

real-time sensor validation which includes failure detection, isolation and accommodation. The second approach

demonstrated is the model-based fault diagnosis system using on-line parameter identification techniques where input

data are processed to estimate important parameters for the predefined fault detection algorithms. Besides these
model based diagnostic schemes, there are still many failure modes which need to be diagnosed by the heuristic

expert knowledge. The heuristic expert knowledge is implemented using a real time expert system tool called G2 TM

by Gensym Corp. Finally, the distributed diagnostic system requires another level of intelligence to oversee the fault

mode reports generated by component fault detectors. The decision making at this level can be best done using a
rule-based expert system. This level of expert knowledge is also implemented using G2 TM.

Introduction

In the effort of designing the real-time diagnostic system for the Intelligent Control System (ICS) of the

Reusable Rocket Engine [1], a hierarchical, decentralized diagnostic system was proposed in [2] as the framework

for the diagnostic subsystem for ICS research project. Figure 1 shows the proposed diagnostic system which has

three layers of information processing. These are condition monitoring, fault mode detection, and expert system

diagnosis. The condition monitoring layer is responsible for signal processing, signal conditioning, feature

extractions, and pattern recognitions. Here, important features to be used in the diagnostic system are extracted from

the incoming data stream and processed. The processed data are then used by the higher level fault mode detection

layer to do preliminary diagnosis on potential faults at the component level. Because of the closely coupled nature
of the rocket engine propulsion system components, it is expected that a given engine condition may trigger more

than one fault mode detector. For example, a surge in the pump outlet temperature measurement on the low pressure



fuelturbopump (LPFTP) may trigger an alarm on the sensor failure detector as well as the LPFTP seal leakage fault
mode detector. Expert knowledge is needed to resolve the conflicting reports from the various failure mode

detectors. This is the function of the diagnostic expert layer. Here, the heuristic nature of this decision process
makes it desirable to use an expert system approach.

Implementation of the real-time diagnostic system described above requires a wide spectrum of information

processing capability. Figure 2 shows the current setup for the implementation of the distributed diagnostic system

in the NASA-Lewis ICS group. Generally, in the condition monitoring layer, fast data processing is often needed

for feature extraction and signal conditioning. This is usually followed by some detection logic to determine the

selected faults on the component level. Three different techniques are used to attack different fault detection

problems in NASA Lewis Research Center ICS testbed simulation [3]. The first technique is the neural network
application for real-time sensor validation which includes failure detection, isolation and accommodation. The results

of this neural network approach has been reported in details in [4,5]. The second approach demonstrated is the

model-based fault diagnosis system using on-line parameter identification techniques where input data is processed
to estimate important parameters for the predefined fault detection logic [6,7]. Besides these model based

diagnostic schemes, there are still many failure modes which need to be diagnosed by the heuristic expert knowledge.

The heuristic expert knowledge is implemented using a real time expert system tool called G2 TM [3]. Finally, the

distributed diagnostic system requires another level of intelligence to oversee the fault mode reports generated by

component fault detectors. The decision making at this level can he best done using a rule-based expert system.

Neural Network Based Sensor Validation

In order to improve the operational reliability of the reusable rocket engine, it is necessary to validate the
measured sensor data, isolate any failed sensor and recover the failed sensor measurements. There has been an

extended effort in applying analytical redundancy to the sensor failure detection and isolation in the jet engine failure
diagnosis problem [8]. In general, this approach utilizes the engine model and the Kalman Filter to detect the

isolate sensor failures. Similarly, in the approach of a neural network based sensor validation, an autoassociative

neural network is fLrSt trained to learn the relationships within the redundant sensor group and then used to estimate

the sensor output as a group which is insensitive to a few corrupt sensors.

More precisely, the goals of the neural network based sensor validation are to identify the failed sensor
where its output is inconsistent with other measurements, and to generate an estimated value for the failed sensor.

In order to apply the neural networks for sensor validation, the sensor measurements are first studied and a group

of analytically redundant sensors are selected. In the study of SSME propulsion system, a group of flight sensors

on the fuel system has been found to be strongly correlated. Figure 3 shows the inter-dependency of the sensor

group. A special class of the autoassociative neural network is then trained to generate on-line estimates for all

sensors whether normal or corrupt. The autoassociative neural network used here is a special selected type where

first half of the neural network is to compress the data into a minimum order of representation and the second half
the neural network is to recovery the encoded information. Figure 4 shows the structure of the autoassociative neural

network for sensor validation. By doing the information compression and recovery, the neural network will be

relatively insensitive to the errors generated by a single sensor. By comparing the incoming measurements with

corresponding estimates, a sensor failure can be identified if a sensor reading departs from its estimated value while

other sensor readings stay close to their estimates. Failed sensor isolation is done by replacing the failed sensor input
(to the neural network estimator) with its estimated value. The neural network then can he used to detect consecutive

sensor failures. The sensor validation scheme has been tested on the simulated sensor output data of the SSME

operation. Figure 5 shows the output of the sensor validation scheme for the the combustion chamber inlet pressure
(Pc) during a series of sensor failures. Pc is key a control parameter and a loss of the measurement can he fatal in

the SSME operation. In the simulation, the Pc sensor was simulated to have its sensor value falling at the rate of

300 psi per second. It is observed that the estimated value follows very closely in despite of the sensor failures.

The figure also shows the estimation of the failed PC sensor is held closely to its actual value during other sensor
failures. Figure 6 shows a similar result on the sensor failure validation of another control variable, the Low Pressure

Fuel Pump discharge temperature, during the multiple sensor failures.
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Model Based Fault Detection

Model based fault detection is the technique that utilizes the nominal operation model to detect any abnormal

operating behavior that can be classified into a specified sU'ucture. In order to develop a baseline operational

reference model, a piecewise linear model of the Space Shuttle Main Engine was first developed in [9]. The

performance model of the SSME can be described as:

x(n+l) = A x(n) + B u(n) + co(n) (1)

y(n) -- C x(n) + 1"1(n)

where x, u and y are the state, the input and the output vectors, co and 1"1are process error vector and

sensor measurement error vector respectively. A, B, and C are the system matrices.

The SSME model uses the positions of the control valves as its inputs to predict the performance variables:
Chamber Pressure and Mixture Ratio. In [9], a system identification algorithm is developed to determine these

parameters from the measurements of the input and output data. The A, B, C matrices obtained for this model are
used as baseline process parameters of the system. Any changes of these parameters observed through real time

identification, above preselected threshold values are used to detect and diagnose the failures.

Fault modes are classified into three different classes: actuator faults, sensor failures, and system

performance degradations. Each fault mode has a different structure in its representations. For example, an actuator
failure can be modelled by the following equation:

u f(n) -- F u(n) + f,o (2)

where ua(n) and u(n) are the actual actuator output due to actuator failure and the requested actuator input

respectively, the matrix 1::. is a diagonal matrix and f.o is a constant vector, both with appropriate
dimensions.

Different values of matrix F. and vector f,0 represent different types of faults of a specific actuator. They

serve as the signature of actuator faults. Table 1 is the list of the expected fault parameters for the common actuator
faults. The actuator fault detection can then be done by a special designed module which does the real-time

estimation of the values of matrix F. and vector f.o using the most current input/output information and the a priori

information of system matrices A, B, and C. This module considers only the actuation faults which affect the

performance model. The module is described as a hypothesis module in [9]. Similarly, the sensor failures and

system performance degradations are represented by different structures. Different fault parameters are then used
to describe different types of faults in their classes. Two more hypothesis modules, for sensor failure and system

degradation respectively, are used in this model based detection algorithm. Also, measured are the residues of these

hypothesis modules which are calculated by the differences between the current measurements and their predicted
values. The residues are the indication of the fitness of these models which can be translated into the confidence

of the hypotheses. For example, in the case of an actuator fault, not only the fault signatures F. and f.o are expected

to have some specific values associative to the fault, but also the residues generated in this module to be relatively

small comparing to other hypothesis modules. Figure 7 shows the basic structure of this distributed diagnostic
scheme. In the demonstration system at NASA-LeRC only the actuator faults are studied in detail and their on-line

estimation algorithm is implemented. The estimated values of fault parameters are used to identify the place and

type of the failed actuator as well as to estimate its failed position which is essential for controller to make the
accommodation actions. Figure 8 shows the estimated fault parameters before and after an actuator failure (OPOV

stuck). The parameter F,(I,I) which drops to 0.0 is an indication of the valve is no longer following the command.

The bias term f,o(l) is then used to calculate the stuck position. Figure 9 is the calculated residue vector of the

hypothesis module which indicates the high confidence of the model after the transition period of the estimation.



RuleBasedFaultDetection

Rulebased fault detection is used for the diagnosis of those fault modes which require the heuristic expert

knowledge. Because of real-rime requirement of the Intelligent Control System the expert system software G2 TM

by GENSYM Corp. was select because of its capability in dealing with real-time data. A G2 implementation of the

rule based diagnostic system for High Pressure Oxidizer Turbopump failure modes is described in [3]. Expert rules
are also used to resolve the conflict reports from the sensor failure detection module, the model based fault detection
module, and the component fault detection modules.

There are three types of knowledge to be built into a typical G2 expert system: object classification,

simulation formulae, and inference rules. As a typical knowledge based system, all objects in the application are

described in terms of classes and subclasses. Each class has its own specific attributes. For example, all types of

seals belong to a super class called SEAL which has common properties like flow rate, seal clearance, etc. Under

this general description of a seal there are different subclasses of seals such as STEP-SEAL, LABYRINTH-SEAL,

and SLINGER-SEAL [10]. Each of these subclasses of SEAL will have its own attributes which are specific to

the subclass. Table 2 shows the object class definition in the HPOTP seal system. They are the building blocks for

HPOTP seal knowledge model. Instances under a class can be created to represent physical objects. For example,

PRIMARY-SEAL is an instance of STEP-SEAL. The relationships between objects ar established through

connections. The values of the attributes of an object are obtained through three mechanisms: sensor inputs,

simulation formulae, and inference rules. If a sensor measurement is available for a particular variable in the G2

knowledge base, an external sensor input can be connected to that variable. This is done by the real-time

communication through GSI_ (G2 Standard Interface). In the NASA-LeRC ICS demonstration system the

communication link of GSI handles more than 60 real-time sensor information for the G2 knowledge base. An
attribute of an object can also receive its value through a simulation formula or from the conclusion of an inference

rule when sensor data is not available. G2 rules contain expert's knowledge of what to conclude and how to respond
to a given set of conditions. When the antecedent of a rule is evaluated (by the inference engine) as true, the rule

is invoked and the action part of the rule is executed. The actions include: determining a variable's value, sending

a value to an external destination, informing the user, activating or deactivating a specific set of knowledge base,

etc. Figure 10 shows some of the rules used in the I-[POTP seal problem diagnosis.

Conclusion

In this paper, different techniques used in the real-time diagnostic system for reusable rocket engine are
described. A neural network based diagnostic system is used for on-line sensor failure detection, isolation and

accommodation. A model based diagnostic system based on the nominal operation data is used to detect the actuator

faults. Classification of actuator faults and the estimation of the fault severity are done by the estimation of selected

fault parameters. An on-line knowledge system is used to detect those component faults which are traditionally done

using heuristic expert knowledge. Rules are used to resolve the conflicting reports from different detection modules.
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Table 2 Class and Subclass Definition of the F_01? Seal System
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if the status of any step-seal is failed then

change the color-pattern of the step-seal

so that foreground-color is cyan

if (the pressure of cavity-1 < 125) and (the

pressure of cavity-Z > ZS) then conclude

that the status of second-seal is failed

if the pressure of cavity-1 • 400 and the

down-pressure of hg-line-1 • 50 then

conclude that the status of prime-seal is
failed

if (the pressure of oxid-cavity-1 • 55) and

|the temperature of oxid-cavity-l< 380)

and (the down-pressure of OXID-

SLINGER <150) then conclude that the

s_tatus of OXID-SEAL is failed

if (the pressure of cavity-2 • 14) and (the

pressure of purge-cavity < 62) then

conclude that the status of purge-seal-r
is failed

if (the pressure of oxid-cavity-1 > 35) and

(the pressure of purge-cavity < 100) then

conclude that the status of purge-seal-I is
failed

Figure 10 Examples of G2 Rules in HPOTP Seal Diagnosis
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